
Unfavorable Strides in Cache Memory Systems
David H. Bailey
December 9, 1994

Ref: Scienti�c Programming, vol. 4 (1995), pg. 53{58

Abstract

An important issue in obtaining high performance on a scienti�c application running
on a cache-based computer system is the behavior of the cache when data is accessed at a
constant stride. Others who have discussed this issue have noted an odd phenomenon in
such situations: a few particular innocent-looking strides result in sharply reduced cache
e�ciency. In this paper, this problem is analyzed, and a simple formula is presented that
accurately gives the cache e�ciency for various cache parameters and data strides.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at
NASA Ames Research Center, Mo�ett Field, CA 94035.

1

Introduction

Scientists accustomed to running large computationally intensive applications on Cray
supercomputers have never had to concern themselves with cache issues. However, with
the recent sharp rise in the
oating point performance of RISC workstations, many scien-
tists are now using these systems for serious computations, and cache issues can no longer
be avoided. Another avenue from which supercomputer scientists have been introduced to
cache memories is the recent incorporation of RISC processors into highly parallel super-
computers. In any event, it is clear that serious programmers need to understand better
how caches operate, so that they can implement their algorithms in ways that optimize
potential performance.

An important concept in this paper is memory stride, i.e. the increment in memory
address, measured in words, between successive elements fetched or stored in the important
inner loops of an application program. Many important scienti�c applications do not
feature exclusively stride one data access but instead feature large nonunit strides. For
instance, many codes perform similar operations on each dimension of a two or three
dimensional array. Performing computations in the �rst dimension of a Fortran program
(or the last dimension of a C program) can be done with unit stride, but the strides of the
computations in the other dimensions are typically large values, and signi�cantly degraded
performance may result when the codes are ported to cache-based systems without change.

One solution to this problem is to rewrite the code to employ array transpositions
between the computational steps in each dimension. In this way all computation can be
done at unit stride. But such revision may require substantial e�ort, and it may still
not result in signi�cant performance improvement unless the time spent in stride one
computation is substantial enough to o�set the cost of the array transpositions.

As a result, many problems of this sort are simply ignored, as scientists accept with
a certain fatalism their codes will not perform very well. However, for some programs
the reduction in performance is su�ciently large that it is worthwile to make an e�ort to
understand and alleviate this problem.

1. De�nitions and Notation

To better understand the phenomenon of performance reduction with strides, consider
the following model of a cache memory system. First assume that the cache is con�gured
with R = 2r cache lines, and assume that each cache line contains W = 2w words, so that
a total of RW words can be cached.

It will be assumed that this cache memory system operates as follows. When a word
at a virtual address A is fetched, it is placed in cache location Q, where Q is determined
by zeroing the bits in the address to the left of the rightmost r +w bits and then shifting
the resulting integer to the right by w bits (i.e. dividing by W). Note that this operation
produces an integer Q in the range 0 � Q < R. When a single word is requested, all W
words of the W -long cache line that it resides in are also fetched.

Many cache-based systems employ \associativity sets." This means that up to C cache
lines with the same cache address, as determined by the mapping function described in the

2

previous paragraph, can be stored simultaneously in the cache. In this way, potentially
RC lines or RCW words may be cached. When a request is made for data that is not in
cache, its cache line replaces one of the C lines currently stored at the cache location where
it is assigned by the mapping function. One some systems the least recently used line is
replaced, while on others the line replaced is determined by some unspeci�ed \random"
procedure. The above model of an associative cache is satis�ed by many, but not all current
RISC systems.

If the stride S of a vector fetch is unity, then W consecutive words reside on the same
cache line. This is obviously a very favorable situation. The situation is similarly quite
favorable if the memory stride is some integer less than W , since in that case many cache
lines contain multiple words required by the CPU. Many scienti�c applications, however,
involve strides larger than W , so that each cache line retrieved from memory contains at
most one word required by the CPU. This last case will be the focus of this paper.

Unfortunately, at some strides even RC words cannot be cached because some of the
associativity sets are overutilized, while others are underutilized. Let us consider a vector
fetch of L words with stride S and ask what fraction of the L resulting cache lines remain
in the cache when the fetch is complete. This question is of interest for two reasons: (1)
a computation may need to access this same set of L words again, and (2) if this vector
fetch was a single row of a matrix stored in column major order (as in Fortran), the next
W rows of the matrix reside in these same cache lines. Either way, performance will be
signi�cantly improved if this data can remain in the cache.

Accordingly, the e�ciency E of a vector fetch of length L will be de�ned as T=L, where
T is the number of cache lines that still remain in the cache when the vector fetch operation
is complete, and where L is the vector length. For simplicity, in the following it will be
assumed that L = RC.

An obvious example of an ine�cient stride is a large power of two. Then all cache lines
will be fetched into the same location of the cache, and the other R � 1 locations will be
completely unutilized. In other words, at most C lines of this data can be stored in the
cache. The resulting e�ciency is only 1=R. Clearly if an application program has arrays
whose dimensions are large powers of two, these arrays should be \padded," such as by
declaring their leading dimensions (in Fortran) to be slightly larger than a power of two. In
this way, accesses of successive rows of data from such an array will have cache addresses
that are slightly o�set, resulting in much more e�cient cache utilization. Most users of
Cray systems are familiar with this tuning technique, since it eliminates bank con
icts that
may reduce performance by factors as high as 10 or 20 [1].

2. Cache E�ciency with Non-Power-of-Two Strides

It may come as a surprise to some that large power of two strides are not the only
particularly unfavorable strides for cache memory systems [4]. To facilitate concrete dis-
cussion in the following, we will consider the particular case R = 32; C = 4 and W = 16.
These values match the cache parameters of the IBM RS 6000/320 system. We will also
assume in the following that the vector length L of the fetch is 128.

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Stride

E
ff

ic
ie

nc
y

Figure 1: Cache E�ciencies for Various Strides

When S = 72, it turns out that in 128 consecutive fetches, the respective cache lines
neatly �ll the 32 � 4 array, resulting in perfect utilization of the cache (except that only
one word in each cache line may actually be required by the CPU). The resulting e�ciency
E is unity, even though 72 is divisible by eight, a highly unfavorable situation on many
vector computers. Now consider S = 73, a completely favorable stride for most vector
computers. In this case the cache e�ciency is only about 0.414. The e�ciencies for strides
16 to 256 are shown in Figure 1. This is obviously a very complicated function.

This curious phenomenon has been noted by others [2, 3, 4, 6]. One way to understand
it is to list the cache addresses of consecutively fetched cache lines in a 128-long vector
fetch, with stride 73, horizontally in a seven-wide table (see Table 1). This table also
includes the notation R to indicate instances when a cache replacement would occur. It is
clear from examining this table that the root cause of this poor performance is the very
nearly periodic behavior of these cache addresses. In particular, these addresses are nearly
periodic with a period of seven.

Recall that virtual address bits higher than position r + w are ignored when placing
the cache line in the cache. Thus we may in general write the cache address Q of the k-th

4

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 9 13 18 22 27 31

4 8 13 18 22 27 31

4R 8 13R 18R 22R 27R 31R

4R 8 13R 17 22R 27R 31R

4R 8 13R 17 22R 27R 31R

4R 8R 13R 17 22R 26 31R

4R 8R 13R 17 22R 26 31R

4R 8R 13R 17R 22R 26 31R

3 8R 13R 17R 22R 26 31R

3 8R 13R 17R 22R 26R 31R

3 8R 12 17R 22R 26R 31R

3 8R 12 17R 22R 26R 31R

3R 8R 12 17R 21 26R 31R

3R 8R 12 17R 21 26R 31R

3R 8R 12R 17R 21 26R 30

3R 8R 12R 17R 21 26R 30

3R 8R

Table 1: Cache addresses for successive fetches when S = 73: Successive fetches are listed
along rows, in a table seven wide, so that the nearly periodic behavior can be observed.

5

word fetched as

Q(k) = int
�
1

W
mod (kS;RW)

�

where int denotes the greatest integer function, and where mod denotes the modulo oper-
ation (i.e. the remainder when the �rst argument is divided by the second). The function
Q(k) is precisely periodic with period RW . But when the stride S is exactly (or very
nearly) a simple fraction of RW , then this function is also precisely (or very nearly pre-
cisely) periodic with period nint(RW=S), where nint denotes the nearest integer function.

In this example, R = 32; W = 16; RW = 512 and S = 73. Indeed, the fraction 512=73
is very close to seven. In fact, 7 � 73 = 511, so that consecutive values of mod(7kS;RW)
di�er by only one. Thus it clear, by examining the above formula, that Q(7k) is identical
for W = 16 consecutive k. But a string of 16 consecutive identical cache addresses results
in 12 replacements, since only four of these can be accommodated in a single associativity
set of the cache. This explains why the fetches in a single column of Table 1 result in a
cache replacement approximately 75 percent of the time. Since this analysis applies to each
column of the array shown in Table 1, it follows that the 75 percent �gure also applies to
the entire table as well.

From these facts one can compute the approximate cache e�ciency E for this example
(recall that the cache e�ciency was de�ned above as the fraction of cache lines that remain
in the cache when the vector fetch is complete). In Table 1, the �rst 4 � 7 = 28 fetches
completely �ll cache addresses 4, 9, 13, 18, 22, 27 and 31, except that address nine has one
line empty. Thereafter approximately 3=4 of the fetches result in a replacement. Thus we
have the approximation

E =
128 � (3=4) � (128 � 28)

128
=

53

128
= 0:4140625

which in this case exactly matches the actual e�ciency determined by counting replace-
ments in Table 1.

As we have seen, the replacement frequency G = 3=4 used in the above calculation
results from the fact that 7� 73 = 511 di�ers from 512 by only one. In general, de�ne the
minimum di�erence D as follows:

D = min
0<a;b<R

jbS � aRW j

When D is zero (i.e. when S is a large power of two, such as 64), then the corresponding
value of G may easily be seen to be unity. When D = 1, then G = 3=4; when D = 2, then
G = 1=2; when D = 3, then G = 1=4; and when D � 4, then G = 0. In other words, when
D is larger than the set associativity size C, then successive fetches move to a di�erent
cache address before a given associativity set is exhausted. In general, the replacement
frequency G is given by the formula

G =
1

C
max(C �D; 0)

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Stride

E
ff

ic
ie

nc
y

Figure 2: Cache E�ciencies Using the Formula

Suppose that S=(RW) is very close to a simple fraction a=b; b � R, so that D =
jbS � aRW j is small. Compute G from the above formula. Generalizing from the above
example, note that the �rst bC fetches will completely �ll the b associativity sets whose
addresses are those that nearly repeat. Thereafter, the fraction G (approximately) of the
fetches will result in replacements. Thus a general formula that is an approximation to the
cache e�ciency E for general strides and cache parameters is given by

E =
L�G(L � bC)

L

Note that when L is large, E = 1�G as expected.
A graph of the e�ciencies for various strides in the standard case used above, computed

with the above formula, is shown in Figure 2. By comparing Figures 1 and 2, it is clear that
this formula is very accurate, particularly at the \spikes", which are the cases of greatest
interest. In fact, the replacement count G(L � bC), which is the key subexpression of
this formula, is (with one exception) always within one of the actual value whenever G is
nonzero.

7

3. A Random Stride Approximation

When the di�erence D is greater than C, the formula above gives perfect e�ciency,
since G in that case is zero. However, the actual e�ciency is somewhat less than unity
for many such cases, resulting in a low-level background \noise" (compare Figures 1 and
2). This phenomenon can be explained by nothing that when the stride S is a substantial
fraction of RW , the operation mod(kS;RW) is a good pseudorandom number generator,
and a certain number of \collisions" can be expected to occur in the resulting cache ad-
dresses. In fact, this operation is a member of the widely studied class of linear congruential
pseudorandom number generators ([5], p. 9).

If one assumes that the assignment of memory fetches to the R addresses is actually
random, then one can compute the expected cache e�ciency by applying techniques of
probability and statistics. The probability P (k) that an individual address contains exactly
k entries after an L-long fetch is given by the formula for a binomial distribution:

P (k) =

L
k

!
pk(1� p)L�k

where p = 1=R. The expected number of replacements F is then

F = R
LX

k=C+1

(k � C)P (k)

and the resulting expected e�ciency E = (L� F)=L. For the example parameters above,
this formula yields E = 0:807714 � � �. The actual average e�ciency, determined from the
data in Figure 1, is 0:892334 � � �. This indicates that the operation mod(kS;RW) actually
behaves somewhat better than a true random number generator.

4. Finding Simple Fractions

One detail was omitted from the above discussion: how can one compute the minimum
di�erence D for a given stride, or in other words, how does one determine the best simple
fraction approximation a=b to S=(RW)? The straightforward scheme of computing jbS �
aRW j for all pairs of integers a and b less than R, in order to �nd the minimum value of
this expression, is time-consuming when R is even moderate in size.

A more direct and elegant means to �nd these rational approximations a=b is to employ
the Euclidean algorithm ([5], p. 319), as follows. Start with the 2-long vector V = (S; RW)
and the 2� 2 identity matrix. At a given step let x be the smaller entry of V , let y be the
larger entry, and let X and Y be the columns of the 2�2 matrix corresponding to x and y.
Compute q = int(y=x). Then replace y by y�qx and X by X+qY . This process continues
until one entry of the vector V is zero. At that point one column of the �nal matrix will
contain the original vector (with any common factor divided out) and the other column
will contain a close rational approximation. In this application, the Euclidean algorithm
may be halted whenever an entry of the matrix exceeds R.

The operation of this algorithm in this application is more easily understood by an
example. Let us consider the particular parameters as above, with the stride S = 197. In

8

other words, we wish to �nd a good simple fraction approximation a=b to 197=512. The
algorithm proceeds as shown below. The value of q used in each step (computed from the
previous step's vector) is shown at the right.

197
512

!
1 0
0 1

!

197
118

!
1 0
2 1

!
q = 2

79
118

!
1 1
2 3

!
q = 1

79
39

!
2 1
5 3

!
q = 1

1
39

!
2 5
5 13

!
q = 2

1
0

!
197 5
512 13

!
q = 39

In this case the desired pair of integers (a; b) is in the next-to-last column generated in the
matrix, i.e. (5, 13). Note that 5=13 = 0:384615 � � � is indeed an excellent approximation to
197=512 = 0:384765 � � �.

Here the �nal column generated, (197; 512), is identical to the original vector. If S is
divisible by a power of two, then the �nal column generated will be the original vector with
the common power of two divided out. In that case, and if both entries of the �nal column
are less than or equal to R, then this �nal column should be selected for (a; b) instead of
the previously generated column. If for a given stride S, no pair (a; b); b � R is found that
satis�es jbS � aRW j < C, then the periodic e�ect does not exist, and the stride may be
considered a favorable stride.

In this particular example, where S = 197, the resulting values a = 5 and b = 13 yield
D = 1, so that G = 0:75 and E = 0:5546875.

5. Improving Cache Performance of Data Access with Strides

We have demonstrated a fairly simple scheme that can accurately predict the phe-
nomenon of unusual slow-downs for particular strides. It should be emphasized, however,
that the above analysis and conclusions depend on the particular model assumed above for
an associative cache. This model is satis�ed by many, but not all, of the currently popular
RISC systems.

What can a programmer do if his or her program features a particularly unfavorable
stride? The most straightforward solution is to \pad" (slightly increase) the dimensions of
arrays having such dimensions. This solution has the advantage that in most cases only
dimension statements need to be changed, and the executable part of the program does not
need to be altered. Some space is \wasted" in this manner, but the resulting performance
improvement is almost certainly worth the additional memory required.

9

There does not appear to be a simple formula giving the optimal amount of padding
for a given unfavorable stride (i.e. array dimension) S, but in practice it su�ces to merely
evaluate the e�ciency function described above for S + 1; S + 2, etc. until an e�cient
stride is found. In examples the author has studied, it appears that a pad of only one or
two is e�ective in most cases.

However, this type of tuning should not be necessary, nor should it be necessary for
programmers to analyze whether their strides are unfavorable. By applying techniques such
as those described in this paper, compilers should be able to detect unfavorable strides and
automatically adjust the appropriate array dimensions. Such adjustments will need to be
optional, since they technically depart from the Fortran-77 standard, but they will likely
be welcomed by the majority of users who prefer the compiler to shield them from such
unsavory features of the underlying architecture.

References

[1] D. H. Bailey, "Vector Computer Memory Bank Contention", IEEE Transactions on

Computers, vol. C-36, no. 3 (Mar. 1987), p. 293-298.

[2] D. Callahan and A. Porter�eld, \Data Cache Performance of Supercomputer Applica-
tions", Proceedings of Supercomputing '90 (Nov. 1990), p. 564 { 572.

[3] J. Ferrante, V. Sarkar and W. Thrash, \On Estimating and Enhancing Cache E�ec-
tiveness", IBM T. J. Watson Research Center, P.O. 704, Yorktown Heights, NY 10598,
August 1991. Presented at the Fourth Workshop on Languages and Compilers for Par-
allel Computing, August 7 { 9, 1991, Santa Clara, CA.

[4] A. H. Karp, \What You Don't Know Can Hurt You, or Machine Organization Can
A�ect Performance", Technical Report G320-3479, IBM Scienti�c Center, 1530 Page
Mill Road, Palo Alto, CA 94304, October 1985.

[5] D. E. Knuth, The Art of Computer Programming, Addison Wesley, Menlo Park, 1981.

[6] M. S. Lam, E. E. Rothberg and M. E. Wolf, \The Cache Performance and Optimization
of Blocked Algorithms", Proceedings of the Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (April 1991).

10

